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Intraclass Correlations for Planning Group Randomized 
Experiments in Rural Education

 Larry V. Hedges E. C. Hedberg
 Northwestern University University of Chicago

Experiments that assign intact groups (usually schools) to treatment conditions are increasingly common in educational 
research. The design of group randomized experiments requires knowledge of the intraclass correlation structure to compute 
statistical power and to determine the sample sizes required to achieve adequate power. The intraclass correlation structure 
of academic achievement is shown to be somewhat different in rural schools than in all schools in the nation. This article 
provides a compilation of intraclass correlation values of academic achievement and related covariate effects that could 
be used for planning group randomized experiments in rural schools. The use of these values to compute statistical power 
of group randomized experiments involving rural schools is illustrated.

Randomized experiments are being used with increas-
ing frequency in educational research, in part because of the 
emphasis on experimental evaluations at the U.S. Institute 
of Education Sciences (IES). In many situations of practical 
interest in education, it is diffi cult or impossible to assign in-
dividuals to receive different intervention conditions. In such 
cases, experiments often assign entire intact groups (such 
as sites, classrooms, or schools) to the same treatment, with 
different intact groups being assigned to different treatments. 
However, individuals in these intact groups are often more 
alike than individuals in different groups, irrespective of 
treatment. Thus the intact groups correspond to what statisti-
cians call clusters in sampling theory and designs that assign 
such groups to treatment conditions are often called group 
randomized or cluster randomized designs. Cluster random-
ized experiments have been used in education for some time 
(see, e.g., Coladarci & Gage, 1984; Good & Grouws, 1979) 
and have also been used extensively in public health and 
other areas of prevention science (see, e.g., Donner & Klar, 
2000; Murray, 1998). Methods for the design and analysis 
of group randomized trials have been discussed extensively 
in Donner and Klar (2000) and Murray (1998).

Cluster randomized experiments sample subjects via 
cluster samples, instead of simple random samples. This has 
an impact on the sampling distribution of statistics computed 
in the experiment, and the analysis of the experiments needs 
to take this sampling design into account. For example, a 
sample obtained from m clusters (such as classrooms or 
schools) of size n is not a simple random sample of mn 
individuals, even if it is based on a simple random sample 
of both clusters and individuals within clusters. If the (total) 
variance of a population (such as a population of students 
clustered within schools) is σT

2, and this total variance is 
decomposable into a between cluster variance σB

2 and a 
within cluster variance σW

2, so that σT
2 = σB

2 + σW
2. The 

variance of the mean of a simple random sample of size mn 
from that population would be σT

2/mn. However, the variance 
of the mean of a sample of m clusters, each of size n, from 
that population (also a sample with the same total sample 
size mn) would be [1 + (n – 1)ρ]σT

2/mn, where ρ = σB
2/(σB

2 
+ σW

2) is the intraclass correlation. Thus the variance of the 
mean computed from a clustered sample is larger by a fac-
tor of [1 + (n – 1)ρ], which is often called the design effect 
(Kish, 1965) or variance infl ation factor (Donner, Birkett, 
& Buck, 1981).

Several strategies can be used to obtain valid analyses 
of cluster randomized experiments. The simplest is to treat 
the clusters as units of analysis by computing the mean 
scores on the outcome (and all other variables that may be 
involved in the analysis) for each cluster (e.g., classroom 
or school) and carrying out the statistical analysis as if the 
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cluster means were the data. If all cluster sample sizes are 
equal, this approach provides exact tests for the treatment 
effect (see, e.g., Blair & Higgins, 1986). More fl exible and 
informative analyses are also available, including analyses 
of variance using clusters as a nested factor (see, e.g., Hop-
kins, 1982) or analyses involving hierarchical linear models 
(see e.g., Raudenbush & Bryk, 2002). The latter approach 
is particularly attractive if the fi nal cluster sample sizes in 
the experiment are not identical (as is almost always the 
case in fi eld experiments). For general discussions of the 
design and analyses of cluster randomized experiments 
see Bloom (2005), Bloom, Bos, and Lee (1999), Donner 
and Klar (2000), Klar and Donner (2001), Murray (1998),   
Murray, Varnell, and Blitstein (2004), or Raudenbush and 
Bryk (2002).

Wise practice (and funding agency requirements) dictate 
that experiments be designed using sample sizes chosen so 
that the statistical test for treatment effects has adequate 
power to detect the smallest treatment effects that are of sci-
entifi c or practical interest. The literature on the computation 
of statistical power typically addresses the power of studies 
that use simple random samples (e.g., Cohen, 1977; Kraemer 
& Thiemann, 1987; Lipsey, 1990). However methods for the 
computation of statistical power of tests for treatment effects 
are available for any of the analyses indicated above (see, 
e.g., Blair & Higgins, 1986; Raudenbush, 1997; Snijders & 
Bosker, 1993). In each case computation of statistical power 
involves the intraclass correlation ρ. Thus the computation of 
statistical power in cluster randomized experiments requires 
knowledge of the intraclass correlation ρ in addition to the 
information on sample size and effect size that is required 
in experiments employing simpler sampling designs. More-
over, power computations typically depend strongly on ρ, 
meaning that it is essential to have a clear idea of what the 
value of ρ might be in order to obtain realistic values of 
statistical power. Therefore researchers who are designing 
experiments that randomize schools to assess the effects of 
interventions on academic achievement have a crucial need 
for accurate information about intraclass correlations. 

Unfortunately, few education researchers have realistic 
ideas about what value of ρ to expect. For example, there 
is conventional wisdom suggesting that values of ρ are 
typically between 0.05 and 0.15. Yet two recent attempts to 
establish reference values for ρ that could be useful in plan-
ning experiments suggested that values between 0.15 and 
0.25 were more realistic in the nation as a whole (Hedges & 
Hedberg, 2007) and in large urban school systems (Bloom, 
Richburg-Hayes, & Black, 2005).  

Neither the national values reported by Hedges and 
Hedberg (2007), nor the values from large urban school 
systems reported by Bloom, Richburg-Hayes, and Black 
(2005) are likely to be applicable to studies of rural schools. 
However the strategy used by Hedges and Hedberg (2006), 
which involved the analysis of sample surveys that used 

nationally representative probability samples with cluster 
sampling designs using schools as clusters, can be used to 
obtain reasonable values of ρ for rural settings. 

The purpose of this article is to provide a comprehensive 
collection of intraclass correlations of academic achieve-
ment based on representative samples of rural schools.  This 
compilation should be useful in choosing reference values 
for planning cluster randomized experiments in research 
on rural education. To anticipate, we fi nd that the reference 
values of ρ obtained for the nation as a whole (and for urban 
schools) are generally larger than those for rural schools and 
would therefore lead to larger and more expensive experi-
ments than are necessary in rural settings.

 Designs and Populations Considered

The intraclass correlation structure will be different 
in different populations (for example, rural schools versus 
urban schools) and at different grade levels. It may, in prin-
ciple, be different in different achievement domains (e.g., 
reading versus mathematics). The intraclass correlation 
structure is also different when different research designs 
are used (e.g., with or without covariates).

We examined the population of rural schools, at each 
grade level from Kindergarten through Grade 12 and both 
mathematics and reading achievement at each grade level 
with one exception. The exception was reading achievement 
at Grade 11 for which data on a national representative 
sample was not available to us.

The analyses reported here focused on intraclass cor-
relations for two research designs involving assignment of 
schools to treatments, which have different intraclass cor-
relation structures. The fi rst design involves no covariates. 
Formally this is a hierarchical design in which schools are 
nested within treatments. The second design involves the use 
of a pretest in the same subject matter as a covariate at both 
the student and school level. Formally this is a hierarchical 
design in which schools are nested within treatments with 
two covariates. One covariate is the school-centered pretest 
score, and the second covariate is the school mean pretest 
score. Data collected under these designs could be analyzed 
via an analysis of variance with school as a factor nested 
within treatments (possibly including two covariates) or via 
a hierarchical linear model analysis using students as the 
fi rst level and schools as the second level with treatment as 
a predictor at the second level (possibly including a covari-
ate at each level).

Datasets Used

This article provides estimates of intraclass correlations 
and associated variance components for academic achieve-
ment in reading and mathematics for rural schools in the 
United States. Data from longitudinal surveys with national 
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probability samples were used because we wished to use 
achievement data collected in earlier years as pretest data 
for evaluating conditional intraclass correlations relevant 
to planning studies that would use a pretest as a covariate.  
When more than one survey could have provided data on a 
given grade level, we analyzed all of them but report results 
based on the survey with the largest sample size or that we 
believed would provide the most reliable estimates. Gener-
ally, we found that the results agreed within sampling error 
(see Hedges & Hedberg, 2006). 

The results reported for Kindergarten, Grade 1, and 
Grade 3 were obtained from three waves of the Early Child-
hood Longitudinal Survey (ECLS). The ECLS is a longi-
tudinal study that obtained a national probability sample of 
Kindergarten children in 1591 schools in 1998 and followed 
them through the fi fth grade (see Tourangeau et al., 2005).  
Achievement test data were collected in both Fall and Spring 
of Kindergarten and fi rst grade, and in Spring only in third 
and fi fth grades. There was no data collection in second and 
fourth grade. Thus Fall achievement test data collected in 
the same year could serve as a pretest in Kindergarten and 
fi rst grades, while data collected in the Spring of the fi rst 
grade served as pretest data for the third grade.

The results reported for Grades 2, 4 to 7, and 9 were 
based on data from the Prospects study. Prospects was 
actually a set of three longitudinal studies, starting with 
(base year) national probability samples of children in 235, 
240, and 137 schools, in Grades 1, 3, and 7, respectively, 
in 1991 (for a complete description of the study design, see 
Puma, Karweit, Price, Riccuti, & Vaden-Kiernan, 1997). 
Achievement test data was collected for three to four years 
thereafter for each sample. Thus the three prospects studies 
collected data in Grades 1 (both Fall and Spring), 2, and 3; 
Grades 3, 4, 5, and 6; and Grades 7, 8, and 9. There was 
pretest data in the base year for Grade 1, but no pretest data 
for the base years in Grades 3 and 7. For all years except 
the base year, the previous year’s achievement test data was 
used as a pretest and in Grade 1 the test data collected in 
Fall served as a pretest. Results for Grade 2 were obtained 
from the fi rst followup to the fi rst grade (base year) sample 
and those reported for Grades 4 to 6 were obtained from the 
three follow-ups of the third grade (base year) sample in the 
Prospects study. The results in reading in Grades 7 and 9 
were obtained from the base year and the second followup 
of the seventh grade sample in the Prospects study.

The results reported on reading in Grades 8, 10, and 12 
and mathematics in Grades 10 and 12 were obtained from 
the National Educational Longitudinal Study of the Eighth 
Grade Class of 1988 (NELS: 88). NELS: 88 is a longitudinal 
study that began in 1988 with a national probability sample 
of eighth graders in 1050 schools and collected reading and 
mathematics achievement test data when the students were 
in Grades 8, 10, and 12 (Curtin, Ingels, Wu, & Heuer, 2002). 

Thus no pretest data was available for Grade 8, but for the 
Grade 10 the Grade 8 data was used as a pretest and for 
Grade 12 the Grade 10 data was used as a pretest. 

Finally, the results on mathematics in Grades 7, 8, 9, 
and 11 were obtained from the base year and follow-ups 
of the Longitudinal Study of American Youth (LSAY) (see 
Miller, Hoffer, Suchner, Brown, & Nelson, 1992). The LSAY 
is a longitudinal study that began in 1987 with two national 
probability samples, one of seventh graders and one of tenth 
graders in 104 schools. Data were collected on mathematics 
and science achievement each year for four years leading to 
samples from Grades 7 to 12. There was no pretest data in 
Grade 7, but the previous year’s data served as the pretest 
for each subsequent year.

Analysis Procedures

The data analysis was carried out using STATA version 
9.1’s “XTMIXED” routine for mixed linear model analysis. 
For each sample and achievement domain, analyses were 
carried out based on two different models, which we call 
the unconditional model and the pretest covariate model. 
We describe these explicitly below in hierarchical linear 
model notation. 

The unconditional model. The unconditional model 
involves no covariates at either the individual or school 
(cluster) levels. The level-one model for the kth observation 
in the jth school can be written as

Y jk = β 0j + ε jk 

and the level two model for the intercept is

β 0j = π 00 + ζ j 

where ε jk is an individual-level residual and ζ j is a random 
effect of the jth cluster (a level-two residual). The variance 
components associated with this analysis are σW

2 (the vari-
ance of the ε jk) and σB

2 (the variance of the ζ j).  
The pretest covariate model. If pretest scores on 

achievement are available, their use as a covariate can  
considerably increase power in experimental designs. The 
pretest covariate model involves using as covariates the 
cluster-centered pretest score at the individual level and 
the school mean pretest score at the school level. Thus the 
level-one model for the kth observation in the jth school can 
be written as

Y jk = β 0j + β 1j  (X jk – X j• ) + ε jk 

and the level two model for the intercept is

β 0j =  π 00 + π 01  X j• + ζ j 



where Xjk is the achievement pretest score for the jth observa-
tion in the kth school, Xj• is the pretest mean for the jth school, 
ε jk is an individual-level residual and ζ j is a random effect of 
the jth school (a level-two residual) and the covariate slope 
β1j was treated as equal in all clusters (schools). The vari-
ance components associated with this analysis are σAW

2 (the 
variance of the εjk  ) and σAB

2 (the variance of the ζj). 

The Intraclass Correlation 

The intraclass correlation associated with the uncondi-
tional model described above is 

         ρ = σB
2/[ σB

2 + σW
2] = σB

2/σT
2                    (1)

where σT
2 = σB

2 + σW
2 is the (unconditional) total variance. 

Note that the residuals εjk and ζ j correspond to the within- 
and between-cluster random effects in an experiment that 
assigned schools to treatments and analyzed the data with no 
covariates. Consequently, the variance components associ-
ated with these random effects and the intraclass correlation 
correspond to those in a cluster randomized experiment that 
assigned schools to treatments and analyzed the data with 
no covariates.

In the pretest covariate model, the (covariate adjusted) 
intraclass correlation is 

            ρA = σAB
2/[σAB

2 + σAW
2] = σAB

2/σAT
2 (2)

where σAT
2 = σAB

2 + σAW
2 is the (covariate adjusted) total 

variance. Note that the residuals εjk and ζ j correspond to the 
within- and between-cluster random effects in an experiment 
that assigned schools to treatments and used the pretest at 
both individual and school level as covariates. Consequently, 
the variance components associated with these random ef-
fects and the conditional intraclass correlation ρA correspond 
to those in a cluster randomized experiment that assigned 
schools to treatments and analyzed the data with the pretest 
(individual and school mean) as covariates. 

For each grade level and achievement domain, with and 
without covariates, we estimated the intraclass correlation 
(or conditional intraclass correlation) via restricted maxi-
mum likelihood using STATA and computed the standard 
error of that intraclass correlation estimate using the result 
given in Donner and Koval (1982). This resulted in 13 (grade 
levels) x 2 (achievement domains) x 2 (covariate sets) = 52 
intraclass correlation estimates (each with a corresponding 
standard error).  

For the pretest covariate model, we also provide values 
of 

                          ηB
2 = σAB

2/σB
2, (3)

the percent reduction in between-school variance, and 

                         ηW
2 = σAW

2/σW
2, (4)

the percent reduction in within-school variance after covari-
ate adjustment. For designs involving covariates, these two 
auxiliary quantities (ηB

2 and ηW
2) are useful in computing 

statistical power. Their use is illustrated in a subsequent 
section of this article. 
    Note that the parameters are RB

2 = 1 – ηB
2 and 

RW
2 = 1 – ηW

2, the proportion of between- and within-
group variance explained by the covariate, are used 
by some authors (e.g., Bloom et al., 2005). We chose 
to tabulate the η2 values instead of the R2 values be-
cause of the simpler relation of the η2 values to the op-
erational effect size parameters used in power analysis.  

Note that the two analyses involved slightly different 
variables, and there were missing values on some of these 
variables in our survey data. Because the quantities ηW

2 and 
ηB

2 involve a comparison of two different analyses (one with 
and one without pretest as a covariate), we believed it was 
important to make this comparison using estimates derived 
from exactly the same set of cases. Consequently, for each 
of the analyses that involved covariates, we recomputed 
the estimates of the unadjusted variance components, σW

2 
and σB

2, using only the cases that were used to compute 
the adjusted variance components σAW

2 and σAB
2 and used 

these particular estimates to compute the ηW
2 and ηB

2 values 
given here. However, we used all cases that could be used 
(including those with missing pretest values) for computing 
the unadjusted intraclass correlation estimate.

We provide estimates of the standard errors of the in-
traclass correlations to provide some idea of their sampling 
uncertainty. Note, however, that the distribution of estimates 
of the intraclass correlations is only approximately normal. 
Moreover, not all of these values are independent of one 
another, and it is not immediately clear how to carry out a 
formal statistical analysis of differences between estimates 
of intraclass correlations on different variables computed 
from the same sample of individuals. 

Results

We found that the patterns of intraclass correlations for 
reading and mathematics in rural schools were quite similar. 
However, there were some differences, and consequently 
we present intraclass correlation data for both reading 
and mathematics achievement. For both mathematics and 
reading achievement, the intraclass correlation structure is 
substantially different for rural schools than for all schools 
in the nation, and we present the unconditional intraclass 
correlation for all schools to provide a comparison.

Mathematics achievement. Table 1 is a presentation of 
results for mathematics achievement. The table is divided 
into two panels of two columns (for the unconditional model 
in the entire nation and for rural schools) and one panel of 
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Table 1
Intraclass correlations for rural schools in mathematics achievement

All Schools Rural Schools Only
Unconditional Model Unconditional Model Pretest Covariate Model

Grade ICC (SE) ICC (SE) ICC (SE) ηB
2 ηW

2

K 243 (9.8) 205 (20.0) 103 (14.5) 172 368

1 228 (9.8) 196 (36.0) 69 (22.1) 115 383

2 236 (19.4) 167 (29.6) 145 (28.0) 358 485

3 241 (10.4) 214 (21.8) 156 (18.9) 275 401

4 232 (19.6) 153 (28.5) 96 (22.3) 278 528

5 216 (17.9) 134 (26.1) 134 (26.9) 478 513

6 264 (19.4) 132 (28.9) 93 (23.2) 283 477

7 191 (33.0) 84 (32.7) n/a n/a n/a n/a

8 185 (31.5) 96 (36.3) 51 (23.9) 201 386

9 216 (32.3) 118 (43.2) 349 (69.7) 50 258

10 234 (10.0) 171 (22.6) 95 (17.1) 188 375

11 138 (28.3) 130 (45.9) 58 (26.6) 105 255

12 239 (10.9) 135 (15.0) 54 (10.0) 72 194

M = 220 149 117 215 385
a = 242 188 119 294 482
b = -4 -7 0 -13 -16
r = -0.44  -0.63  -0.02  -0.43 -0.62

Note: All values in this table are multiplied by 1,000, thus a value listed as 243 is 0.243.
a. The values for all schools are from Hedberg and Hedges (2006).



four columns (for the pretest covariate model). The data 
for each grade level is given in a different row. In the row 
for each grade, the columns of the fi rst panel provide the 
estimates of the intraclass correlation (ρ) and the standard 
errors of the estimates of ρ (in parentheses after the estimate 
of ρ) for all schools in the nation. The columns of the second 
panel provide the estimates of the intraclass correlation (ρ) 
and the standard errors of the estimates of ρ (in parentheses 
after the estimate of ρ) for rural schools. The columns in the 
third panel provide the estimates of the conditional intraclass 
correlation (ρA), the standard errors of the estimates of ρA (in 
parentheses after the estimate of ρA), and estimates of ηB

2 
and ηW

2 for rural schools. For example, consider the data for 
the pretest covariates model for Grade 1, given in the third 
panel of the table. On the row associated with Grade 1, the 
values in the columns of the third panel (columns 6 to 9 of 
the table) are 69, 22.1, 115, and 383, respectively, which 
correspond to estimates of 0.069, 0.0221, 0.115, and 0.383 
for the estimate of ρA, the standard error of the estimate of 
ρA, ηB

2, and ηW
2.

The bottom four rows of each table give summary 
statistics (across grades) for the estimates of ρ, ηB

2, and 
ηW

2 to help interpret the table as a whole. The summary 
statistics are the mean, the intercept (a) and slope (b) of 
an unweighted regression of the estimates on grade level 
(with Kindergarten equaling Grade 0), and the correlation 
(r) between estimates and grade level. For example, the 
mean intraclass correlation in the unconditional model in 
rural schools is 0.149, the correlation between grade and 
intraclass correlation is –0.63, and the regression equation 
for predicting the unconditional intraclass correlation from 
grade is 0.188 – 0.007(Grade).

Comparing the unconditional intraclass correlations 
in all schools with those of rural schools, we see that the 
intraclass correlations in rural schools are generally smaller 
and often substantially so. The average intraclass correlation 
in all schools is 0.220, but in rural schools it is only 0.149. 
This illustrates the principle that design parameters suitable 
for experiments intending to represent all schools are gener-
ally not appropriate for experiments intended to represent 
rural schools. In particular, since intraclass correlations in 
rural schools are generally smaller, experiments involving 
fewer schools will have the same statistical power as larger 
experiments intended to represent the nation as a whole.

Although there is a tendency of the intraclass correla-
tions in rural schools to be larger at lower grades, in general 
there are not large changes across adjacent grade levels. 
None of these changes exceed two standard errors of the 
change. The pretest covariate analyses typically reduced the 
between cluster variance to from one tenth to one third of its 
value in the unconditional model (e.g., produced ηB

2 from 0.1 
to 0.3), but typically reduced within-cluster variance to only 
from one third to one half of its value in the unconditional 
model (e.g., produced ηW

2 values of 0.3 to 0.5). Generally, 

smaller between- and within- (but especially between-) 
schools variance and smaller intraclass correlation lead to 
higher statistical power. 

There is a slight anomaly in the results for the pretest 
covariate model in Grade 9. The adjusted intraclass cor-
relation is larger than the unadjusted intraclass correlation. 
This is theoretically possible if the covariate adjustment 
reduces within-school variation more than between-school 
variation; however this appears to happen in Grade 9 only. 
It might be wise to use smoothed values estimated from 
the regression coeffi cients given in the bottom rows of the 
table. These smoothed values of the ninth grade adjusted 
intraclass correlation (ρA), ηB

2, and ηW
2 are 0.116, 0.173, 

and 0.335, respectively. 
Reading achievement. Table 2 is a presentation of 

results for reading achievement, organized in the same 
way as Table 1, which reported results for mathematics. 
The intraclass correlation and adjusted intraclass correla-
tion values in reading are generally quite similar to those 
in mathematics. As in mathematics, there is a tendency of 
the intraclass correlations in reading to become smaller at 
higher grades, but relative to mathematics the changes across 
adjacent grade levels are often larger. The results for Grade 
2 are particularly inconsistent (having smaller values of the 
intraclass correlations) with the results from either Grade 
1 or Grade 3. These differences exceed two standard errors 
of the difference. Because the values at Grade 2 do not fi t 
the pattern of variation across the other grades, it might be 
wise to use “smoothed” values estimated from the regression 
coeffi cients given in the bottom rows of the table. These 
smoothed values of the second grade unadjusted intraclass 
correlation, the adjusted intraclass correlation (ρA), ηB

2, and 
ηW

2 are 0.204, 0.101, 0.182, and 0.441, respectively. None 
of the other differences exceed two standard errors of the 
difference. 

There appears to be somewhat less consistency among 
the adjusted intraclass correlations in reading than in 
mathematics. There also appears to be somewhat smaller 
reduction in between-cluster variance in reading and than 
in mathematics. The pretest covariate analyses typically re-
duced the between cluster variance to from one tenth to one 
third of its value in the unconditional model (e.g., produced 
ηB

2 from 0.1 to 0.3), but typically reduced within-cluster 
variance by onlt slightly over one half (e.g., produced ηW

2 
values less than 0.5).

There is a slight anomaly in the results for the pretest 
covariate model in Grade 9. The adjusted intraclass cor-
relation is larger than the unadjusted intraclass correlation. 
This is theoretically possible if the covariate adjustment 
reduces within-school variation more than between-school 
variation; however this appears to happen in Grade 9 only. 
It might be wise to use smoothed values estimated from 
the regression coeffi cients given in the bottom rows of the 
table. These smoothed values of the ninth grade adjusted 
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Table 2
Intraclass correlations for rural schools in reading achievement

All Schools Rural Schools Only
Unconditional Model Unconditional Model Pretest Covariate Model

Grade ICC (SE) ICC (SE) ICC (SE) ηB
2 ηW

2

K 233 (9.7) 240 (21.7) 192 (20.4) 306 412

1 239 (10.0) 255 (40.3) 111 (27.5) 133 367

2 204 (17.9) 144 (26.9) 79 (18.6) 236 439

3 271 (10.8) 229 (22.5) 178 (20.2) 367 507

4 242 (19.9) 188 (32.6) 40 (12.5) 71 459

5 263 (19.5) 181 (31.6) 86 (20.0) 171 413

6 260 (19.2) 148 (31.0) 35 (12.5) 85 439

7 174 (20.0) 76 (19.7) n/a n/a n/a n/a

8 197 (8.5) 111 (11.6) n/a n/a n/a n/a

9 250 (25.5) 103 (26.6) 341 (56.1) 50 494

10 183 (8.9) 119 (18.6) 53 (13.1) 198 456

11 -- n/a n/a n/a n/a n/a n/a
--

12 174 (9.5) 99 (12.9) 69 (11.0) 245 358

M = 224 158 118 186 434
a = 258 229 95 186 443
b = -6 -13 3 -2 -1
r = -0.53  -0.79  0.10  -0.09 -0.07

Note: All values in this table are multiplied by 1,000, thus a value listed as 233 is 0.233.
a. The values for all schools are from Hedberg and Hedges (2006).



intraclass correlation (ρA), ηB
2, and ηW

2 are 0.119, 0.166, 
and 0.434, respectively. 

Minimum Detectable Effect Sizes

A simple way to describe the implications of these 
results for statistical power is to use them to derive the small-
est effect size for which a design that randomized schools 
to treatments would have adequate statistical power. This 
effect size is often called the minimum detectable effect 
size (MDES) (Bloom, 1996, 2005). We used 0.8 (with a 
two-sided test at signifi cance level 0.05) as the criterion for 
adequate statistical power in computing the MDES values 
reported in this article. A power value of 0.8 has been widely 
used in research design and was recommended, for example, 
by Cohen (1977). We considered designs with no covariates 
and with pretest as a covariate at both the individual and 
group level and considered both reading and mathematics 
achievement as potential outcomes. Finally we considered 
a balanced design with a sample of size of n = 60 per school 
with m = 10, 15, 20, 25, or 30 schools randomized to each 
treatment group.

Table 3 gives the minimum detectable effect sizes for 
studies of mathematics achievement based on the parameters 
given in Table 1. With no covariates, the MDES values are 
in the range of 0.45 to 0.65 for m = 10 schools assigned to 
each treatment and typically exceed 0.25 even for m = 30. 
The use of a pretest as a covariate typically reduces the 
MDES values to less than 0.40 for m = 10 and 0.30 or less 
for m = 15. MDES values tend to be smaller in the higher 
grades, so that the MDES values are less than 0.25 for m = 
15 in Grades 6 to 12. Table 4 gives the minimum detectable 
effect sizes for studies of reading achievement based on the 
parameters given in Table 2. These values are somewhat 
larger than, but quite comparable to, those for mathematics 
achievement given in Table 3.

Although there is no universally adequate standard for 
evaluating the importance of effect sizes, applying Cohen’s 
(1977) widely used labels of 0.20 as small and 0.50 as me-
dium would imply that an experiment randomizing m = 10 
schools to each treatment should easily be adequate to detect 
effects of “medium” size in a design that used pretest as a 
covariate and that an experiment randomizing m = 15 schools 
to each treatment should be adequate to detect effects of a 
size slightly larger than “small.” 

One reason for this article is that the intraclass correla-
tion structure found in rural schools is somewhat different 
than that of the nation as a whole. Thus the design require-
ments for experiments intending to represent rural schools 
are somewhat different than for experiments intended to 
represent the nation as a whole. Comparing the minimum 
detectable effect sizes in Tables 3 and 4 to the MDES values 
for the entire nation given in Table 7 of Hedges and Hedberg 
(2006), we see that the MDES values in Tables 3 and 4 are 

generally smaller. For example, consider an experiment in 
which the outcome is mathematics achievement at Grade 
6 and which uses pretest as a covariate. The MDES for an 
experiment randomizing m = 10 schools to each treatment 
and intending to generalize to all schools is d = 0.37, but 
Table 3 of this article reveals that the MDES for the same 
experiment conducted in rural schools is d = 0.28. This 
means that, to obtain the same statistical power, experiments 
intending to represent rural schools require smaller sample 
sizes than experiments intending to represent the nation as 
a whole. To illustrate the difference, it would be necessary 
to have m = 17 schools per treatment in the national study 
to obtain the same power to detect an effect of d = 0.28 as is 
possible with an experiment involving m = 10 rural schools. 
This is a very substantial (70%) difference in sample size 
requirements.

Using the Results of this Article to Compute Statistical 
Power of Cluster Randomized Experiments

In this section, we illustrate the use of the results in this 
article to compute the statistical power of cluster random-
ized experiments comparing two treatments. We fi rst show 
how to use conventional power tables and power calcula-
tion software (which assume simple random samples), then 
show how to carry out the computations using the noncentral 
t-distribution function that is available in many software 
packages such as SPSS, SAS, and STATA. In each case we 
show how to compute power with and without covariates. 

Using Power Tables and Power Calculation Software

Tables giving statistical power (e.g., Cohen, 1977) and 
computer software for computing statistical power (e.g., Bo-
renstein, Rothstein, & Cohen, 2001) are available for many 
designs using simple random samples, but those designed 
for obtaining power from the independent-groups t-test are 
the most widely available. Following Cohen’s framework, 
such tables typically provide power values based on treat-
ment and control group sample sizes N1

T and N2
T (often as-

sumed to be equal for simplicity) and effect size ΔT, where 
the superscript T indicates that these quantities are what is 
used in the power tables. The calculations on which these 
tables are based translate the sample sizes and effect size 
into the degrees of freedom and noncentrality parameter of 
the noncentral t-distribution on which the statistical power 
depends. 

Because the power of tests for treatment effects in clus-
ter randomized experiments also depends on the noncentral 
t-distribution, tables like Cohen’s (or the corresponding 
software) can be used to compute the power of the test used 
in the case of clustered sampling by judicious choice of 
sample sizes and effect size. We have to enter the table with 
a confi guration of sample sizes and a synthetic effect size 
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Table 3
Minimum detectable mathematics achievement effect sizes in rural settings with power 0.80 and n = 60 as a 
function of m

Number of schools per treatment group (m)
Grade Covariates 10 15 20 25 30

K none 0.62 0.50 0.43 0.38 0.35
pretest 0.27 0.22 0.19 0.17 0.15

1 none 0.61 0.49 0.42 0.38 0.34
pretest 0.23 0.18 0.16 0.14 0.13

2 none 0.57 0.46 0.39 0.35 0.32
pretest 0.35 0.28 0.24 0.21 0.19

3 none 0.64 0.51 0.44 0.39 0.36
pretest 0.34 0.27 0.24 0.21 0.19

4 none 0.55 0.44 0.38 0.34 0.31
pretest 0.30 0.24 0.21 0.19 0.17

5 none 0.52 0.41 0.36 0.32 0.29
pretest 0.36 0.29 0.25 0.22 0.20

6 none 0.51 0.41 0.35 0.31 0.29
pretest 0.28 0.23 0.20 0.18 0.16

7 none 0.42 0.34 0.29 0.26 0.24
pretest -- -- -- -- --

8 none 0.45 0.36 0.31 0.27 0.25
pretest 0.22 0.17 0.15 0.13 0.12

9 none 0.49 0.39 0.34 0.30 0.27
pretest 0.14 0.11 0.09 0.08 0.08

10 none 0.57 0.46 0.40 0.35 0.32
pretest 0.26 0.21 0.18 0.16 0.15

11 none 0.51 0.41 0.35 0.31 0.28
pretest 0.18 0.14 0.12 0.11 0.10

12 none 0.52 0.41 0.36 0.32 0.29
pretest 0.15 0.12 0.11 0.10 0.09
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Table 4
Minimum detectable reading achievement effect sizes in rural settings with power 0.80 and n = 60 as a function of m

Number of schools per treatment group (m)
Grade Covariates 10 15 20 25 30

K none 0.67 0.54 0.46 0.41 0.37
pretest 0.38 0.30 0.26 0.23 0.21

1 none 0.69 0.55 0.48 0.42 0.39
pretest 0.27 0.21 0.18 0.16 0.15

2 none 0.53 0.43 0.37 0.33 0.30
pretest 0.27 0.22 0.19 0.17 0.15

3 none 0.66 0.53 0.45 0.40 0.37
pretest 0.41 0.32 0.28 0.25 0.23

4 none 0.60 0.48 0.41 0.37 0.34
pretest 0.19 0.15 0.13 0.12 0.11

5 none 0.59 0.47 0.41 0.36 0.33
pretest 0.26 0.21 0.18 0.16 0.15

6 none 0.54 0.43 0.37 0.33 0.30
pretest 0.19 0.15 0.13 0.12 0.11

7 none 0.41 0.33 0.28 0.25 0.23
pretest -- -- -- -- --

8 none 0.47 0.38 0.33 0.29 0.27
pretest -- -- -- -- --

9 none 0.46 0.37 0.32 0.28 0.26
pretest 0.15 0.12 0.11 0.10 0.09

10 none 0.49 0.39 0.34 0.30 0.27
pretest 0.24 0.19 0.16 0.15 0.13

12 none 0.45 0.36 0.31 0.28 0.25
pretest 0.23 0.19 0.16 0.14 0.13

               



(here called the operational effect size) that will yield the 
appropriate degrees of freedom and noncentrality parameter. 
We describe this process fi rst for analyses without covariates 
and then for analyses with the pretest as a covariate.

No covariates. If the actual numbers of clusters assigned 
are m1 and m2, then entering the power table with sample 
sizes N1

T = m1 and N2
T = m2 yields the correct degrees of 

freedom for the test. The relevant operational effect size 
using our choice of degrees of freedom is 

                  ΔT = δ√       
n
             (5)

                                 
1 + (n - 1)ρ

where δ is the effect size (standardized mean difference) and 
ρ is the unadjusted intraclass correlation.

Pretest as a covariate. In this design, we assume that the 
pretest has been used as a covariate at both the cluster level 
(as the school mean of the covariate) and at the individual 
level (as an individual value centered within each cluster). 
If the actual numbers of clusters assigned are m1 and m2, 
then entering the power table with sample sizes N1

T = m1 
and N2

T = m2 – 1 yields the correct degrees of freedom for 
the test, since one degree of freedom is lost for the introduc-
tion of the cluster-level covariate. The relevant operational 
effect size is

 

     ΔT = δ√ 
nm2 (m1 + m2 -1) √         1

                  (6) 
             

(m1+ m2) (m2 -1)        η2
W + (nηB

2 −ηW
2)ρ

 
   

where δ is the (unadjusted) effect size, ρ is the unadjusted in-
traclass correlation, and ηB

2 and ηW
2 are the ratios of adjusted 

to unadjusted between- and within-cluster variances defi ned 
in Equations (3) and (4). Reference values for all of these 
parameters are given in Tables 1 and 2 of this article. Using 
ρ, the cluster sample size n, and the variance ratios ηB

2 and 
ηW

2 to compute operational effect size makes it possible to 
compute statistical power and sample size requirements for 
analyses based on clustered samples using these tables and 
computer programs designed for the two group t-test. 

Note that, if the covariate had been used at the school 
level only, the procedure for computing statistical power 
would be exactly the same as that given above, except that 
the value of ηW

2 used in Equation (6) would be ηW
2 = 1. If 

the covariate had been used at the individual level only 
(centered within schools), there would be two differences 
in the procedure for computing statistical power. The fi rst 
difference is that the value of ηB

2 used in Equation (6) 
would be ηB

2 = 1. The second difference would be that N1
T 

and N2
T would be set equal to m1 and m2 as in the case with 

no covariates.

Using the Noncentral t-Distribution Function to Compute 
Power

Although tables of the power of the two sample t-test are 
common, they do not cover every possible situation. How-
ever most statistical packages (including SPSS, SAS, and 
STATA) include a noncentral t-distribution function, which 
can be used to compute power directly. When the null hy-
pothesis is false, the t-statistic has a noncentral t-distribution 
which depends on two parameters: degrees of freedom and 
a noncentrality parameter. Suppose that there are m1 clusters 
in the control group, m2 clusters in the treatment group, and 
the effect size (before covariate adjustment) is δ.

 No covariates. When there are no covariates, the de-
grees of freedom are ν = m1 + m2 – 2 and the noncentrality 
parameter is

          λ = δ√m1 m2 n             1
                                (7)

                       
m1 + m2  √[1 + (n - 1)ρ]

where ρ is the unadjusted intraclass correlation. 

The power of the one-tailed test at level α is 

                  p1 = 1 – H[c(α, ν), ν, λ] (8)

where c(α, ν) is the level α one-tailed critical value of the 
t-distribution with ν degrees of freedom [e.g., c(0.05,10) = 
1.81], and H(x, ν, λ) is the cumulative distribution function 
of the noncentral t-distribution with ν degrees of freedom 
and noncentrality parameter λ. The power of the two-tailed 
test at level α is 

p2 = 1 – H[c(α/2, ν), ν, λ] + H[–c(α/2, ν), ν, λ]. (9)

Pretest as a covariate. If the pretest has been used as 
a covariate at both the cluster level (as cluster mean on the 
covariate) and at the individual level (as an individual value 
centered within each cluster), the degrees of freedom are 
ν = m1 + m2 – 3 and the noncentrality parameter is

    λΑ = δ√ m1 m2 n √            1
                           (10)

                   
m1 + m2      ηW

2 + (nηB
2 - ηW

2)ρ

where δ is the effect size before covariate adjustment, ρ is 
the unadjusted intraclass correlation, and ηB

2 and ηW
2 are the 

ratios of adjusted to unadjusted between- and within-cluster 
variances defi ned in Equations (3) and (4).
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The power of the one-tailed test at level α is 

                p1 = 1 – H[c(α, ν), ν, λA] (11)

where c(α, ν) is the level α one-tailed critical value of the 
t-distribution with ν degrees of freedom [e.g., c(0.05,10) = 
1.81], and H(x, ν, λ) is the cumulative distribution function 
of the noncentral t-distribution with ν degrees of freedom 
and noncentrality parameter λ. The power of the two-tailed 
test at level α is 

     p2 = 1 – H[c(α/2, ν), ν, λA] + H[–c(α/2, ν), ν, λA]. (12)

Note that, if the covariate had been used at the school 
level only, the procedure for computing statistical power 
would be exactly the same as that given above, except that 
the value of ηW

2 used in Equation (8) would be ηW
2 = 1. If the 

covariate had been used at the individual level only (centered 
within schools), the value of ηB

2 used in Equation (8) would 
be ηB

2 = 1, and the degrees of freedom would become ν = 
m1 + m2 – 2 as in the case with no covariates.

Example with No Covariates 

Consider an experiment that will randomize m1 = m2 
= 10 schools to receive an intervention to improve math-
ematics achievement so that n = 20 students in each school 
would be part of the experiment. The analysis will involve 
a two-tailed t-test with signifi cance level α = 0.05. Suppose 
that the smallest educationally signifi cant effect size for this 
intervention is assumed to be δ = 0.50. Suppose further that 
the schools were chosen to attempt to represent a national 
sample of rural fi rst graders. Entering Table 1 on the second 
row for Grade 1 and the panel for the unconditional model 
(columns 4 and 5) gives the intraclass correlation for fi rst 
graders as ρ = 0.196. 

Using power tables. We could compute the power from 
tables of the power of the t-test such as those given by Cohen 
(1977). To do so, we fi rst compute the operational effect 
size given in (5) as

ΔT =          
0.50√20

               = 1.029.
                  √ 1 + (20 - 1) (0.196) 

Cohen’s tables give the statistical power in terms of sample 
size (in each treatment group) and effect size. Examining 
Cohen’s (1977) Table 2.3.5, we see that the operational effect 
size of 1.029 is between tabled effect sizes of 1.0 and 1.2. 
Entering the Table with sample size N1

T = N2
T = 10, we see 

that a power of 0.56 is tabulated for the effect size of ΔT = 
1.00 and a power of 0.71 is tabulated for an effect size of ΔT 
= 1.20. Interpolating between these two values, we obtain a 
power of 0.58 for ΔT = 1.03.

Note that in this case (and many others) the operational 
effect size for the tests based on clustered samples is larger 
than the actual effect size (in this case 1.03 versus 0.50). 
This does not mean that the power of the test for the design 
based on the clustered sample is larger than that based on a 
simple random sample with the same total sample size. The 
reason is that the test using the clustered sample has many 
fewer degrees of freedom in the error term. For example, a 
test based on an effect size of ΔT = 0.50 and a simple random 
sample of nm = (10)(20) = 200 in each group would have 
power essentially 1.0.

Using the noncentral t-distribution. Alternately, we 
could compute the power from the noncentral t-distribu-
tion function. The noncentrality parameter from Equation 
(7) is

λ =      
0.50 √ (10/2)20

       = 2.300.
                     √ 1 + (20 - 1) (0.196)

Using Equation (9) and the noncentral t-distribution func-
tion, (for example the function NCDF.T in SPSS), with ν = 
10 +10 – 2 = 18 degrees of freedom, c(0.05/2, 18) = 2.101, 
and λ = 2.300, we obtain a two-sided power of p2 = 1 – 0.41 
+ 0.00 = 0.59. The slight difference between the value com-
puted using the noncentral t-distribution directly and that 
from the power tables (0.58 versus 0.59) is due to rounding 
and interpolation from the values in the power tables.

Example with Pretest as a Covariate at Both Individual 
and Cluster Level

Consider an experiment that will randomize m1 = m2 = 
10 schools to receive an intervention to improve third grade 
reading achievement and that n = 20 students in each school 
would be part of the experiment. An analysis of covariance 
will be used with pretest as a covariate at both individual and 
school level using a two-tailed test with signifi cance level α 
= 0.05. Suppose that the smallest educationally signifi cant 
effect size for this intervention is δ = 0.40. Suppose further 
that the schools were chosen to attempt to be representative 
of rural fi rst graders nationally. 

 Entering Table 2 on the fourth row for Grade 3 and the 
panel for the unconditional model (columns 3 and 4) gives 
the intraclass correlation for third graders as ρ = 0.229.  En-
tering Table 2 on the fourth row for Grade 3 and the panel 
for the pretest covariate model (columns 6 to 9) gives the 
between- and within-school variance ratios after covariate 
adjustment as ηB

2 = 0.367 and ηW
2 = 0.507.  

Using power tables. To compute the power from tables 
of the power of the t-test such as those given by Cohen 
(1977), we face a complication in that the tables assume 
equal integer-valued treatment and control group sample 
sizes,  but  we  have  to  use  operational  sample  sizes  
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of N1
T = 10 and N2

T = 9.  Because Cohen’s tables give the 
statistical power in terms of equal sample sizes (in each 
treatment group), we will need to interpolate between the 
tabled sample sizes N1

T = N2
T = 9 and N1

T = N2
T = 10. The 

operational effect size depends on N1
T and N2

T, so we have to 
compute a different value of ΔT for each of the sample sizes 
between which we will interpolate. For N1

T = N2
T = 9, the 

operational effect size computed using Equation (6) is

 ΔT  = 0.4 √(20)(9 + 9 - 1)  •
                                             

(9 + 9)(9 - 1)     

   √             1
     0.507 + [(20)(0.367) - 0.507](0.229)  

= 1.281.

For N1
T = N2

T = 10, the operational effect size computed 
using Equation (6) is 

ΔT = 0.4 √(20)(10 + 10 - 1)  •
                                          (10 + 10)(10 - 1) 

    √                       1   
         0.507 + [(20)(0.367) - 0.507](0.229) = 1.277.

Note that, although the operational effect sizes depend 
slightly on N1

T and N2
T, both values round to 1.28, illustrating 

that the operational effect sizes are essentially identical for 
consecutive sample sizes found in power tables.

Examining Cohen’s (1977) Table 2.3.5, we see that the 
effect size ΔT = 1.28 is between tabled values of effect size 
of 1.2 and 1.4. Entering the Table with sample size N1

T = 
N2

T = 9, we see that a power of 0.65 is tabulated for the ef-
fect size of ΔT = 1.2 and a power of 0.79 is tabulated for an 
effect size of ΔT = 1.4. Interpolating between the two power 
values (0.65 and 0.79) for N1

T = N2
T = 9, we obtain a power 

of 0.71 for ΔT = 1.28. This value (0.71) corresponds to the 
power associated with the effect size of δ = 0.40 and a test 
based on 16 degrees of freedom. 

Examining Cohen’s (1977) Table 2.3.5 again with 
sample size N1

T = N2
T = 10, we see that a power of 0.71 is 

tabulated for the effect size of ΔT = 1.2 and a power of 0.84 is 
tabulated for an effect size of ΔT = 1.4. Interpolating between 
the two power values (0.71 and 0.84) for N1

T = N2
T = 10, 

we obtain a power of 0.76 for ΔT = 1.28. This value (0.76) 
corresponds to the power associated with the effect size of 
δ = 0.40 and a test based on 18 degrees of freedom. 

To obtain the power associated with an effect size of δ 
= 0.4 and a test based on 17 degrees of freedom, we must 
interpolate once again between these two values. We obtain 
a power value for N1

T = 9 and N2
T = 10 of p2 = 0.74.

Using the noncentral t-distribution. Alternatively, we 
could use the noncentral t-distribution to compute power. 
Then the noncentrality parameter from Equation (10) is

 λA
 = 0.4 √(10)(10)(20)  •

                                                
 10 + 10          

     √            1
  0.507 + ((20)(0.367) - 0.507) (0.229) 

= 2.779.

Using Equation (12) and the noncentral t-distribution func-
tion, (for example the function NCDF.T in SPSS), with 10 
+ 10 – 2 – 1 = 17 degrees of freedom, c(0.05/2, 17) = 2.110, 
and λA = 2.779, we obtain a two-sided power of p2 = 1 – 0.25 
+ 0.00 = 0.75. The slight difference between the value com-
puted using the noncentral t-distribution directly and that 
from the power tables (0.74 versus 0.75) is due to rounding 
and interpolation from the values in the power tables.

Conclusions

The values of intraclass correlations presented in this 
article suggest that values for rural schools are smaller than 
those in the nation as a whole, typically ranging from 50 to 
85% as large in mathematics and from 55 to 100% as large 
in reading. For Kindergarten through Grade 4 in math and 
through Grade 5 in reading, somewhat larger values of the 
interclass correlation (roughly 0.15 to 0.25) may be appropri-
ate in rural education than the 0.05 to 0.15 guidelines that 
have sometimes been used. The guideline of 0.05 to 0.15 
is more consistent with the values of intraclass correlations 
we found in Grades 5 to 12 in math and Grades 6 to 12 in 
reading. 

The differences between rural schools and all schools in 
intraclass correlations and covariate effectiveness in reduc-
ing between- and within-school variation are large enough to 
have important consequences for the design of experiments. 
Because statistical power depends so much on these design 
parameters, these differences translate into differences of 
50% or more in required sample sizes, with smaller sample 
sizes typically being required to achieve the same statistical 
power in studies representing rural schools.

The principal application of the results given in this ar-
ticle will probably be for planning randomized experiments 
in rural education that assign schools (rather than individu-
als) to treatments. However, it is important to recognize 
that the between-district and between-state components of 
variance are not estimated here. Consequently, these two 
components of variance are implicitly included here as part 
of the between-school variance. This is desirable if the values 
are to be used to plan experiments that involve schools from 
several districts or states. However, the estimates reported 

 INTRACLASS CORRELATIONS  13



here may overestimate the relevant intraclass correlations 
to some degree if the design involves schools from only a 
single district or state. Similarly, whether multiple districts 
or states are involved will have some impact on the ef-
fectiveness of the covariates in explaining between- and 
within-school variation. It is unclear just how much of an 
impact this may have, but the consistency of Hedges and 
Hedberg’s (2007) results based on national data with those 
of Bloom et al. (2005) based on single school districts sug-
gest that district and state effects on intraclass correlations 
may not be large. 

There are also other potential applications of the results 
reported in this article. One involves the use of information 
external to an experiment to adjust the degrees of freedom 
of signifi cance tests in designs involving group random-
ization (see Murray, Hannan, & Baker, 1996). Murray, et 
al. caution that users should have good reasons to assume 
that any external estimates used actually estimate the same 
intraclass correlation as that in the experiment. If the data 
from this compilation meets that assumption in any given 
situation involving rural schools, these intraclass correlations 
should substantially increase the degrees of freedom used 
in the test for treatment effects because they tend to have 
relatively small standard errors. 

A second potential application of these intraclass 
correlations is for the adjustment of test statistics based 
on analyses that incorrectly ignored clustering. Ignoring 
clustering (when it is present), generally makes results look 
more signifi cant than they actually are. Adjustments to the 
t-statistic for the effects of sample clustering are available, 
but these corrections require knowledge of ρ (Hedges, 2007). 
For experiments that have been conducted in rural schools, 
the values in this compilation provide some guidelines on 
values of ρ that might be plausible in attempting to deter-
mine if a conclusion about the statistical signifi cance of 
a treatment effect might have held if clustering had been 
taken into account. 

A third potential application of the reference values 
given in this article is to the computation of standardized 
effect size estimates and their standard errors in group 
randomized trials. Depending on the statistics reported, 
the computation of effect size estimates and their standard 
errors in multilevel designs may require knowledge of ρ 
(see Hedges, in press). If the report of the experiment itself 
does not include information that can be used to compute 
an estimate of ρ, a reviewer conducting a meta-analysis will 
need to impute values of ρ, and this compilation may provide 
some idea of values that are plausible in rural schools.
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